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Cardiovascular and related respiratory diseases are sertous and leading causes of death. Given the gravity of the
disease, this phenomencn has drawn the attention of the medical community to seek ways to improve the treatment
techniques. Biostatisticians in furn have developed appropriate statistical methodologies to analyze data from
cardiovascular patients. To better explain data on this phenomenon, the geometric model is generalized in truncated
form. Statistical properties of this new model, expressions to estimate the model parameters and a statistic to test the
"heart failure rate” are derived. The heart failure rate is seen as analogous to the statistical hazard rate. The new
model is called the intervened geometric distribution (IGD). The model itself is generalized to the intervened
geometric distribution of the nth order {IGDIN). Both models can be used to test the effectiveness of any

intervention. An illustrative exampie is provided.
1.0 Background and Motivation

Let Y be a random number of heart attacks suffered
by an individual before coming to a hospital for
cardiovascular treatment. Realize that Y=0 is not
observable. The observable sample space for Y is the
set of positive integers {1,2,........ I. Hence , a natural
and reasonable choice for describing the uncertainty
of Y is a zevo truncated geometric (ZTG)
distribution,

PIY=yl8]=(i-0)8" ; y=12.... 0

where §e(0,1) denotes the chance of having heart
fatiure in a unit time interval. Notice that the
expectation of Y is (1-8)7 or on the average the
number of heart failures a cardiovascular patient
entering a hospital might have is {(1-0)".

Depending on the cormplexity of the illness, a
cardiovascular patient might undergo either surgical
or a medical treatment. Whatever the treatment may
be, it will have an effect of changing the incidence
parameter © into a new setting p6 for a patient
during the post treatment period. That is the average
number of heart faillures to be suffered by a patient
during a period after the treatment is E(Z)=p8, a
function of 8, p € [0}, ») where Z denotes the number
of heart failures to be suffered by a patient during the
post treatment period, and p is interpreted as the
"treatment” effect. Z follows a geometric
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distribution:
Pr[Z=zlp,®)] =(}-p0)(p8)"; 2=0,1.2,...; pb<l {(2)

Notice that unlike Y, zero is a possibility for the
random variable, Z. The zero value for p is indicative
of successful treatment in the sense that the expected
number of heart failures after treatment is zero,
Whereas p=1 is indicative of the status quo after
treatment. In situations.in which the heart failure
incidence is more after treatment p will be greater
than one.

2.0 The Intervened Geometric Distribution

Suppose that an observational apparatus has kept a
recordf only X=Y+Z, namely the total number of
heart failures suffered by a patient altopgether in one’s
entire lifetime until death which includes both pre
and post freatment periods. Assume that the RV's Y
and Z are independent. The probability function (PF)
of X is then

PEX':x!p,8z='§; PIVSIPIZ=nilY=i]  (Ga)
&3]

which yields



PIX =xlp#1,6]=(1~6)(1—p6)e

. (3b
(P =)/ (p—Dfe*" e

and
P[X=xlp=1,0]=x(1-0)*" |

where x=1.2,3...., Be (0,1}, and pe[0,=). Thisis
the "intervened geometric distribution” {(IGD). The

. 2 . .
mean, u,, and variance, ¢°,, of the IGD are easily
obtained and they are:

p=EGO)=(1-p8 )/(1-8)([-pB), (4
and
o® =var(X)y=(0/(1-8%)[ 1+p{(1-0)/(1-p0))*] . (3)

The median, X, of IGD in (3) could be obtained
from its survivor function, S (a,p,8)=P[X>alp,0],
which is |-F(alp,8)=PiX Salp 8], Thatis

Flalp 5 l,ﬂ):(l—B)(l-p@)/(B(p«E)Z (™10 . (6)

=)

The survivor function of IGD is;

8 (alp = 1,0)y=0"1((p"" (1-0)-(1-pOW(p-1)]. (T

"The case mm which p=Icould be discussed using the
L Hospita! rule on these resulis since

ImPIX =xlp=1,8}=PlX = xlp=18}in
ol

{3). In other words, the survival function in the case
of p=1{ isthe limitas p—lin (D or

S, (alp=1,0)=8"[1+(1-6)a]. (%)

To find the median , ., we equate the survival
function in (7) or (8) to V2 depending on whether the
treatment effect, p, 15 or is not equal to one. That is-
we rewrite the median finding equation as

201-0)0  mefp  me™ -(1-pBV(1-8)]=(p-1,

when p> 1, and recognizing that 1-p6+<1-6, we find
an approximate but simple equation that
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Zexmc(!—e)pxmc+l ={p-13,
which we solve to obtain the median,
Ke=In{(p- 1/ 2p(1-8) )/ {np+inB}, when p=1. (%)

Similarly, when p<1 then 1-8<1-pB and an
approximate solution for the median in this case is

X o™ {in{: (1-p)201-8)(1-p®) } /1n(®) ],
when p<i. ' (1)

In the case that p =1 the following holds,

KipelnO+InX | =-In2, (1
The mode , X, of the ¥GD in (3) could be obtained
by solving the inequality that Pr{X=x_ -lj<
Pri¥=x,, |>PriXsx +11. It vields after
simplifications that:

X Inf(1-0)/(1-pB)}/inp, when p >1,

mo

mlp(1-00t-p)/inp whenp<t,  (12)

eliof [1/(1-8)]

when p=1,

where gh is greatest largest integer.

3.0 The Hazard Function

The concept of hazard rate {or sometimes called
failure rate) function at time t is useful in survival
analysis. In the case of a discrete distribution, it is
defined as,

h, (=Pe{X=t}/Pr[Xz1+i]
In cardiovascular studies, it is called the heart failure

rate which for a patient during a period before
treatment is

o . o
h, (=P Y=t}/S (0)= 7 (_6— —1 a3y

since



I
S, (D=1-(1-8) Z gyt =g

yef

and the heart failure rate is

b, (D=Pr{Z=t}/S {O=[(1/p)-1] (14)

during the post treatment period since

i
z |
S0 = 1=(1-p8) ) (p6)" = (p&)* .
z=()
By comparing (13) and (14) we notice that the heart
fatture rate for a patient after the treatment is less
than the heart failure rate before the treatment if

p=0(1+0)/(1+8%. (15}

When we consider the heart failure rate at a time, t,
for a patient who has been treated, it is either

h_r(rlpil}m%%ﬂz

(p' ~1y(1—p#b)
0o —(1-p&) / (1-0)

(16)

when there is a change in heart failure rate due to
treatment, or

i 2
f('g; -1)

-+ D(1-6)

ho(tlp=1)= (17

when the status quo of the heart failure rate prevails
even after the treatment. A comparison of (13) and
(17) reveals that

h(tlp=1)< Hz[h.),(l‘)]z,
sirice

I
[1-+(r+1H1—-6)

<2} . Furthermore, because

Be(0.,1), we may state that /1, (1lp =1) <[4, (1)
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irmpiying that the heart failure rate until death for a
patient who has undergone a treatment is less than
the square of the heart failure rate before the
treatment, when the effect has been of the status quo,
ie p=l.

In general, when p# 1, it is interesting to note the
relationship between h,(t), the overall heart faifure
rate of a patient who has undergone treatment and
that of h),{t) and h,(t), the heart fatlure rate before and
after treatment respectively. That is

ho(flp#1) = (» “’EU —
g2 by
&) )

(18)

Notice the the treatment is maost effective (i.e. when
p=0), then (18) results in h,(t)=h,(0) implying that the
heart failure rates or hazards are indentical.

In a situation in which there is no change, i.e. p=1,
even after the treatment, h_(t) is less than h, (#) since

- . .
h (1) :5 —1 m@h}, (¢} and in which Be(0,1).

For computing the probahility Tor specified values of
the parameters, p and 6, the following recurrence
refation of the LG in (3) is noted,

(o5 —DPriX =x+lp=1,8]=
G 1P X =xlp=1,0)

(19)

For p=| we use L'Hospital’s rule in {19) and obtain

xPriX =x+llp=1,6]=
(x+18Pr[X =xlp =1,6]

which provides an interpretation for 8.

4.0 The Intervened Geometric Distribution of the
n" Order

We now Investigate the distribution of the sum



H
T = Z X, of arandom sample, X, X;,..X of

i1
i=i
size nz 1 from an IGD in {3). Using the moment
generating function,

o

@, (i) = E(e") = D ¢ Pt[X = 1]

xe=|

__ U=6)1-po
(1—Ge™)(1—pbe*)
we obtain the probability generating function (PGF),
E(WX) of X, which upon raising to the nth power,
yields the PGF of T. Expanding the PGF of T in
powers of w, we obtain the PF of T, That is

and changing ¢" to w,

PrT =1ln,p#1,6]=

3k
_ — (20)
[SJM} it p)6"
o(p—1)
where Be(0,1), pei0,=), n=12,....., t=n,n+l,...... ,

and H(t,n,p) is a generalized geometric number.
Some properties of this new number are:

H&mm4“W{hiy
.
H(r,(},p)u{é 3: ;:g N

H(t1,p)=p"-1.

The number Hit,n,p) quickly becomes very large
even for moderate values t and n, and hence an
approximation is worthwhile. Thus after some
derivation,

-1

pl—n’
nwi}

The PF in (20) is called then intervened geometric
distribution of the n'™ order (IGDN).

Hitnp)=(p- 1)”( (Z2)
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5.0 Parameter Estimation

Consider a random sample X, X, ... X, of size
n =1 from 2 population with IGD in (3), then the
log- fikelihood function Y{x, ,X, ,.....x, )} of the
sample is

i

> inlpt - i+ nxin6-

i=!
mfln(1=8)~1n g+ In(1— p#) - nll - pl}},

(23)

Swixlp21,6) =

1=l

H
where x = x; / n , the sample mean.
i=l
Differentiating separately with respect to € and p in
(23) and equating them to zero, we obtain the

Fan Eat

maximum likeithood estimates (MLE)& and p of

the model parameters, 0 and p. The estimating
equation for the incidence parameter, 8, is then

. ’ 6 Y.
~1+(C§i(1wp9)+ } (24)

In (24) we incorporate (4) wi{h; in place of E(X) to
simplify {24) to an approximation which is

pll—p6*)
(1—p6)

5o (=D

= - (25)
(p+Dx

after ignoring the term pé?z (:1:- +1) which is much
less than one. The MLE in (25) is root -n consistent.
Similarly , we solve the estimating equation,
= ph- n(l-8)
X, =
&g 1) (p= (1= pd)

{26)

for estimating the treatment effect, p. Using equation
(26) we derive,



P

(27

x—{1—8)

, when p>1,

and

5 b=0)-1] o8

-, when p<l.
7.

~

The MLE’s, & and p are asymptotically unbiased.

6.0 Testing Whether The Treatment Was
Effective

A zero value for p is indicative of completely
successful treatment, whereas p=! is to be
interpreted as the status quo in the heart failure rate.
Of interest to any medical team is whether effective
treatment took place or at least the risk of heart attack
was not increased. That is to say that it is of interest
to test Hy:p=1 versus Hy:p#1 (hopeiully p<1) based
on arandom sample X, | X, ... X, of size n from
an IGD as in (3). Since the incidence rate, 8, is
unknown in a real lite situation, the testing of p is not
straight forward. For-this purpose we employed.the
Neyman's cfa] test procedure, and also use if to find
a confidence interval estimate for the treatment
effect. See Neyman {£959). Using this procedure an
asymptotic test statistic is

(P12, (-3
(n—1{x—1)

(29)

R/E”df:

which is chi squaredisiributed on 1 degree of
freedom under a hypothesized value of p. That is for
a large sample we will reject the null hypothesis Hy:
p=1, in favor of H,: p<l, whenever the test score ,

ZZ;E(xI. et

Ky = (n=Dx-1)

standard chi square percentile for some preselected
significance level & in the interval (0,1).In the case
of small sample size, critical values of x,,_; should be
computed based on simulated results. Also the power
of our test score could be computed under a clearly

is smaller than the
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specified alternative hypothesis. For this purpose,
suppose that lep:p“ﬂlua, where Ae(0,1) is a
desired impact of the treatment effect.. Then one can
see that:

Power =
Prl g pm > Xl Hip=p =1-Ae(0))

[

(30)

where ¥+ is chi square distributed on one degree of
freedom under H,.

The 100(1-a)% confidence interval for the treatment
effect , p, we proceed as follows. Note that

Pr{~Z gy <Z,<Zgynl=1-—a in which

Z o= le g i (29)and 2,5 is the | 00(a/2)"
percentile from the standard normal distribution. We
note that Zéfz = Zle’/lidf , the ¢hi squared

percentile with one degree of freedom (df). Also we

(px+1) X

1
e + =
J(p+Dx +D Jip+ix

and recognize that the second term is negligible since

£
S+l

could be approximated to ./ 2 -+1 after writing it as

write

x = | . The coefficient in the first term

i
+1 ————= and recognizing that the second
p g
NhES!

term is negligible. Hence we write an approximate

probability ,
Jio+ D[ 2 (% - )7
Vn=D(x-1)

Pri =2y, < < Zean

=1-¢.

By squaring both sides of this expression ,
rearranging terms , and defining



_ 2x(n—=1)(x-1)

D —aF

B

, we have,

PY{BIS'IQ‘IJ/' —l<p< lez—afz.lc:f - 1]5 I~a.

3h
7.0 NMumerical Example

We have data from three different time periods at a
hospital treating cardiology patients. Table 1
surnmarizes these results from the data gathered. We
call the three data sets "studies”. The data sets are
fairly small and thus the large sample approximations
may not be entirely appropriate. However, they do
demonstrate the results rather nicely. Table 2 follows
with the statistical test results and the confidence
iimits. One can see in the first two studies that based
on the chi square statistics one would reject the nuil
at least at the 0.10 level in that the treatment may
have been effective. The last result demonstrates that
the treatment was in fact not effective. One can also
see from the estimates of 0 that the prior heart
failure rate was lower initially in the first two studies.
The confidence intervals for p are rather wide and
do encompass the observed parameter values rather
easily. The MLE’s demonstrate the overall true
outcomes in each case.

8.9 Conclusions

Overatl the methodology does demonstrate the value
of the model in that now one does have an analytic
teol in the IGD to actually measure the post
reagment effectiveness for heart attack victims. The
appropriate approximations do make the equations
tractable. The danger in use of some approximations
is that one ¢an miss results that may really be quite
sensitive to the change in the status pre to post
treatment. We have been fortunate to be able to
demonstrate this procedure. Larger data sets will also
be needed froem other Medical Centers to further
validate this procedure.

N . N
Study '5(“ & P
; 15 120 10106 | 0573
2 20 120 | 0031 | 0553
3 20 180 | 0154 | (.89

Table 1: Parameter Estimates.

suy | Ao | W |
I 3.77 0 5.38
2 3.00 0 529
3 4.07 0 7.87

Table 2: Chi Square and Confidence Limits for p.
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